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Transverse instability and its long-term development for solitary waves of the„2¿1…-dimensional
Boussinesq equation

K. B. Blyuss, T. J. Bridges, and G. Derks
Department of Mathematics & Statistics, University of Surrey, Guildford GU2 7XH, United Kingdom

~Received 23 August 2002; published 27 May 2003!

The stability properties of line solitary wave solutions of the (211)-dimensional Boussinesq equation with
respect to transverse perturbations and their consequences are considered. A geometric condition arising from
a multisymplectic formulation of this equation gives an explicit relation between the parameters for transverse
instability when the transverse wave number is small. The Evans function is then computed explicitly, giving
the eigenvalues for the transverse instability for all transverse wave numbers. To determine the nonlinear and
long-time implications of the transverse instability, numerical simulations are performed using pseudospectral
discretization. The numerics confirm the analytic results, and in all cases studied, the transverse instability
leads to collapse.
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I. INTRODUCTION

One of the fundamental ways that a solitary wave trav
ing in one space dimension generates a two-spa
dimensional pattern is through transverse instability. A tra
verse instability of a line solitary wave is associated with
class of perturbations traveling in a direction transverse
the basic direction of propagation. In addition to establish
the existence of the transverse instability, a major questio
what implications this instability has for the long-term b
havior of the system: does it settle into a new two-spa
dimensional pattern, or collapse? In this paper, we study
sequence of questions for the canonical Boussinesq equ
in two space dimensions,

utt5„f ~u!1«uxx)…xx1suyy , ~1!

where «561 and s561. In general,f (u) can be any
smooth function, but the canonical form of the Boussine
equation has the form

f ~u!5D~u22u! with D561.

When D521, «51, ands51, this equation was de
rived by Johnson@1# to describe the propagation of gravi
waves on the surface of water, in particular, the head
collision of oblique waves, and it was derived by Breizm
and Malkin @2# in the context of Langmuir waves.

In the absence of the transverse variation~i.e.,uy50) and
for «521, D521 this equation reduces to the so-call
‘‘good’’ Boussinesq equation, which is well posed, and f
which sech2 solutions exist for anyc with ucu,1. These
waves are stable when12 ,ucu,1 @3#. For the caseucu, 1

2 it
was shown by computer-assisted simulation of the lead
term in the Taylor expansion of the Evans function that th
is an unstable eigenvalue@4#. This result was generalized t
include solitary waves with nonzero tails, and rigorous
proved using the symplectic Evans matrix in Ref.@5#.

The transverse instability of solitary waves has be
widely studied since the seminal work of Zakharov@6# on
the nonlinear Schro¨dinger equation and the work of Kadom
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sev and Petviashvili@7# on the transverse instability of th
Korteweg-de Vries soliton. Since then, the transverse in
bility of solitary waves has been investigated for a wi
range of models; examples include the nonlinear Schro¨dinger
~NLS! equation and related equations@8–10#, the
Kadomtsev-Petviashvili equation@11–14#, the Zakharov-
Kuznetsov equation@9,15,16#, and water waves@17#. A re-
view of the transverse instability for the NLS equation a
other related models can be found in the work of Kivshar a
Pelinovsky@14#.

In this paper, we will first use a geometric condition
derived in Ref.@16# to get an explicit criterion for smal
transverse wave number instability. For this we use the m
tisymplectic formulation of Eq.~1! in an essential way. To
get detailed information for all transverse wave numbers,
compute explicitly the Evans function for th
(211)-dimensional Boussinesq model linearized abou
larger family of line solitary waves~allowing the state at
infinity to be nonzero!. Plots of the dependence of the grow
rate on the transverse wave number are presented.

The postinstability behavior of the nonlinear problem
studied using direct numerical simulation. The numeri
evidence confirms the analytic results and suggests tha
postinstability in the nonlinear system leads to collapse in
cases. A multisymplectic pseudospectral discretization@18# is
used as a basis for the numerical simulations. The nume
scheme is applied to the full two-dimensional PDE and
observe transverse modulation and further developmen
the longitudinal and transverse instabilities, resulting in
collapse of the initial line solitary waves. In the parame
region where the analytic criterion indicates that the solit
wave state is longitudinally stable but transversely unsta
simulations support the analytic results and provide insi
into the long-term development of this instability.

II. MULTISYMPLECTIFYING THE EQUATIONS

The Boussinesq system has a range of geometric st
tures. First, we record the Lagrangian and Hamiltonian str
tures. Letu5fxx , then the system is Lagrangian with
©2003 The American Physical Society26-1
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L5E F2
1

2
fxt

2 1F~fxx!1
1

2
«fxxx

2 1
1

2
sfxy

2 Gdxdydt,

whereF(•) is any function satisfyingF8(•)5 f (•).
The Boussinesq equation can be represented as a H

tonian system in a number of ways~e.g., Ref.@19#!. For
example, let

H5E FF~u!2
1

2
«ux

21
1

2
Fx

21
1

2
swy

21g~u2wx!Gdxdy,

~2!

where g is a Lagrange multiplier associated with the co
straint u5wx . With Hamiltonian variables (F,u,w,g), the
governing equations take the form

2ut5
dH

dF
52Fxx ,

F t5
dH

du
5 f ~u!1«uxx1g,

~3!

05
dH

dw
5gx2swyy ,

05
dH

dg
5u2wx .

However, the most interesting form of Eq.~1! for the
present purposes is the multisymplectic formulation, wh
can be represented in the canonical form@20#

MZt1KZx1LZy5“S~Z!, ZPR6, ~4!

where

Z5S q1

q2

q3

p1

p2

p3

D ,

M5S 0 1 0 0 0 0

21 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

D with

u~x,y,t !5q1~x,y,t !,
05662
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K5S 0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

21 0 0 0 0 0

0 21 0 0 0 0

0 0 21 0 0 0

D ,

L5S 0 0 1 0 0 0

0 0 0 0 0 0

21 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

D ,

S~Z!52F~q1!2
1

2«
p1

21
1

2
p2

22
s

2
p3

2 .

Using q15u it is straightforward to show that this system
a reformulation of Eq.~1!.

III. GEOMETRIC CRITERION FOR THE TRANSVERSE
INSTABILITY

An advantage of the multisymplectic formulation is th
there is a geometric condition which is easy to verify for t
transverse instability of line solitary waves@16#.

Consider the well-known basic family of solitary wave
of Eq. ~1! of the form

Z~x,y,t !5Ẑ~u;c,l !, u5x2ct1 ly1u0 , ~5!

obtained by taking the first component to be a sech2 wave,

u~u;c,l !5^e1 ,Ẑ~u;c,l !&5A~c,l ! sech2@B~c,l !u#, ~6!

with

B~c,l !5
1

2
A«~D1c22s l 2!, A~c,l !56

«

D
B2.

The existence of the solitary wave clearly requires«(D
1c22s l 2).0. The other components ofẐ are easily ob-
tained from Eq.~6! and the multisymplectic equations~4!.

For the linear stability analysis, letZ(x,y,t)5Ẑ(u;c,l )
1Re@U(u;l,k)elt1 iky#, substitute this into Eq.~4! and lin-
earize. Then, if the resulting linear equation has squa
integrable solutionsU(u;l,k) with Re(l).0 andkPR, we
call the basic solitary wave stateẐ(u;c,l ) transversely un-
stable. Assuming thatẐu is the only square integrable ele
ment in the kernel of the linearization operatorL5D2S(Z)
2@K2cM1 lL #(d/du), we have the following geometric
condition of the transverse instability for smalll andk. Sup-
pose
6-2
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D5UAc Al

Bc Bl
U.0, where A52

1

2E2`

`

^M Ẑu ,Ẑ&du,

B5
1

2E2`

`

^L Ẑu ,Ẑ&du. ~7!

Then the basic solitary waveẐ(u;c,l ) of Eq. ~1! is linearly
transverse unstable@16,17#.

Using the above definitions of the multisymplectic mat
cesM andL , we obtain

A52
1

2E2`

` S q1

d

du
q22q2

d

du
q1Ddu52cE

2`

`

q1
2du

52cK, ~8!

B5
1

2E2`

` S q1

d

du
q32q3

d

du
q1Ddu5s l E

2`

`

q1
2du5s lK ,

~9!

where

K5E
2`

`

u2du5
4

3

A2

B
52

6«

D2
~s l 22c2

2D !A2
s l 22c22D

«
.

Substitution of Eqs.~8! and ~9! in Eq. ~7! yields

sgnD5sgnF2
s

c
AS Ac1

l

c
Al D G

5sgnFsS Ac1
l

c
Al D G

5sgnF2sS K1c
]

]c
K1 l

]

] l
K D G

5sgn@2s~s l 22c22D !~4s l 224c22D !#. ~10!

Since the condition for the transverse instability requiresD
.0, we have the following result:Suppose
05662
«s~4s l 224c22D !.0, ~11!

then the basic solitary wave Zˆ (u;c,l ) is linearly transversely
unstable.

The multisymplectic formulation also provides an expre
sion for the linear growth rate of the instabilityl as a func-
tion of the transverse wave numberk for long-wave pertur-
bations@16#:

l5
AAcBl2AlBc

uAcu
k1O~k2!

5
A2s~4s l 224c211!~s l 22c211!

4c2212s l 2
k1O~k2!.

~12!

This provides the growth rate fork small. In the following
section, the Evans function will be constructed in order
determine the growth rate for all transverse wave numberk.

In the remainder of this section, we apply condition~11!
for various parameter values.

For the good Boussinesq equation from Ref.@3# with «
521 and D521 the existence and transverse instabil
requirements are

s l 22c211.0 and 2sS s l 22c21
1

4D.0, ~13!

respectively. Combining these conditions leads to the follo
ing system of inequalities forc and l whens.0:

1
4 1s l 2,c2,11s l 2, ~14!

and fors,0

c2, 1
4 1s l 2. ~15!

These inequalities define the regions in (c,l ) parameter
plane, where the basic solitary wave exits and is linea
transversely unstable, and these regions are presente
Fig. 1.

One can do a similar analysis for Johnson’s equation@1#,
wheres51, «51, andD521. The existence requiremen
is l 2,c221 and the instability condition isl 2.c22 1

4 . This
6-3
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result is inconclusive for two reasons. First, the two regio
do not overlap so the geometric condition does not pre
instability for any parameter values. Second, when«511
the equation is ill posed as an evolution equation~this can be
seen at the linear level where the dispersion relation pred
instability as the wave number goes to infinity!, and so the
question of long-time stability is irrelevant.

IV. THE EVANS FUNCTION ANALYSIS
OF THE TRANSVERSE INSTABILITY

In this section we use the Evans function formalism
order to analyze the linear transverse stability problem
the Boussinesq model~1! for all values of the transvers
wave number. We restrict attention to the parameter value
most interest:«521 andD521 associated with the goo
Boussinesq, although we put no restriction ons ~but keeping
in mind thats511 is the most interesting case!.

However, the class of solitary waves will be enlarge
Namely, we include solitary waves biasymptotic to a no
trivial state at infinity, specifically,

U~u!5U`16d2 sech2~du!, u5x2ct1 ly , ~16!

where

d5 1
2 ~A114a2c21s l 2!1/2 and U`5 1

2 ~12c21s l 2!

22d252
2a

11A114a
. ~17!

The value of the parametera is constrained only by the ex
istence of the square root: 114a>(c22s l 2)2.

Here we will not use any geometric structure~although it
might be interesting to look more closely in this directio!
and so work directly with Eq.~1!. Let

u~x,y,t !5U~u!1Re$ũ~u!exp@ iky1lt#%. ~18!

By substituting this expression in Eq.~1! and linearizing, one
obtains the following equation for the complex functio
ũ(u):

ũuuuu12~Uũ!uu2~12c21s l 2!ũuu

22~cl1 iskl !ũu1~l21sk2!ũ

50. ~19!

After the change of variablex̃5du, substitution of the ex-
plicit expression forU from Eq. ~16!, and dropping the til-
des, Eq.~19! reduces to

uxxxx24@~123sech2 x!u#xx2gux1bu50, ~20!

where

g5
2~cl1 iskl !

d3
and b5

l21sk2

d4
. ~21!
05662
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To obtain explicit solutions of this equation, we note that
takingu5fxx andv5123 sech2x in Eq. ~20!, and integrat-
ing twice the equation simplifies to

fxxxx24vfxx2gfx1bf50. ~22!

Solutions of this equation can be readily found in a man
similar to that in Ref.@21# ~see also@11#!. First we note that
in the limit x→6`, Eq. ~22! reduces to

fxxxx24fxx2gfx1bf50. ~23!

Substituting nowf5emxf̂, one can see thatm satisfies the
quartic equation

m424m22gm1b50. ~24!

Quartics of this form have been analyzed in Ref.@5# @see Eq.
~10.9! there#, and when Re(b).0 there are two roots with
positive real part and two roots with negative real pa
Therefore, the space of solutions decaying asx→1` is two
dimensional, as is the space of solutions decaying asx→
2`.

If the four rootsm j , j 51, . . . ,4 of Eq.~24! are distinct,
the corresponding solutions of Eq.~22! are given by

f j~x!5em j xhj~x!, ~25!

with

hj~x!5~4m j
318m j2g!212m j

2 tanhx. ~26!

The case of multiple roots can be handled similarly@21#. The
solutions of the original equation~20! are found by substi-
tutingu(x)5f(x)xx , and the other components of the vect
v(x) can be obtained by differentiating the expression
u(x).

Localized solutions of the linearized problem exist if o
can match the solutions decaying asx→` with the solutions
decaying asx→2`. This can be determined by finding th
zeros of the so-called Evans function, which correspond
the eigenvalues of the linearized problem. To define
Evans function, we write Eq.~20! as a first-order system

vx5A~x!v, v5S u

ux

uxx

uxxx

D ,

A~x!5S 0 1 0 0

0 0 1 0

0 0 0 1

2b14vxx g18vx 4v 0

D ~27!

with v5123 sech2 x.
Since the trace of the matrixA(x) vanishes, the Evans

function can be defined asE(l,k)5v1(x)`v2(x)`v3(x)
`v4(x) @22#. An alternative expression for the Evans fun
6-4
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functionE(l)5E(l,0) versusl for c50.25, c50.35, andc50.75, respectively.~b! Growth rate versus
for the values of velocityc50.6, c50.75, andc50.9, respectively.
tion can be derived by using the adjoint system as show
Ref. @23#. The adjoint system of Eq.~27! has the form

wx52A~x!* w, w5S w1

w2

w3

w4

D , ~28!

whereA(x)* denotes the Hermitian conjugate ofA @A(x)*

5A(x)̄T#. The equation forw4 turns out to be

~w4!xxxx24v~w4!xx1ḡ~w4!x1b̄~w4!50. ~29!

This equation is equivalent to Eq.~22! up to the change o
variables:x→2x, g→ḡ, b→b̄, and therefore its solution
can be obtained from Eq.~25! by changingx for 2x and
conjugating them:

~w4! j5e2m j* xhj~2x!̄, ~30!

with hj (x) defined in Eq.~26!. Other components of the
vectorw(x) can be obtained from Eq.~28!.

Let m1 andm2 be the two roots of Eq.~24! with negative
real part, and letvj (x) andwj (x), j 51,2, be the correspond
ing solution vectors of the linearized~respectively, adjoint!
system. Since the matrixA(x) in Eq. ~27! is traceless, we can
define the Evans function for system~27! as follows@23#:

E~l,k!5U^w1~0!,v1~0!& ^w1~0!,v2~0!&

^w2~0!,v1~0!& ^w2~0!,v2~0!&
U, ~31!

where ^•,•& denotes the complex inner product inC4. To
obtain a unique definition of the Evans function, the scal
limx→` e22m j x^wj (2x),vj (x)&51 is used. This normalize
the eigenvectors and the adjoint eigenvectors ofA`

5 limx→6` A(x).
After some lengthy algebra and introducing the scali

which enforces the asymptotic limitE(l,k)→1 as l→`,
the final expression for the Evans function can be obtain
which we do not present here since it is lengthy~the expres-
sion for the Evans function as well as the calculations of
instability growth rate can be downloaded as aMAPLE file
from the website@24#!.
05662
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Zeros of the Evans functionE(l,k) correspond to the
bounded solutions of the linearized stability problem w
the wave numberk and the growth rate Re(l). The leading
order terms~in k and l) in the Evans function are in com
plete agreement with the results of the geometric condit
of Sec. III. Note that, since the construction here is based
a basic solitary wave with a nontrivial state at infinity, it
suggestive that the geometric condition@16# extends to such
waves.

We illustrate the dependence of the Evans function on
wave speed and transverse wave number in Fig. 2. In the
graph, the transverse wave number is set to zero, to com
with the known results on longitudinal instability. The grap
is in complete agreement with the known results~e.g., Refs.
@3,5#! that the solitary wave is stable for1

2 ,c<1 and un-
stable for 0<c, 1

2 . In the right-hand graph in Fig. 2, we
present the plot of the growth rate Re(l) as a function of the
transverse wave number. Note that the waves of the g
Boussinesq which are longitudinally stable are transverse
stable. Note also that there is a cutoff wave number, sim
to the other cases of the transverse instability, such as in
Zakharov-Kuznetsov equation@15#.

V. POSTINSTABILITY SIMULATIONS

In this section, we perform a simulation of the PDE~1!
using the multisymplectic spectral discretization proposed
Ref. @18# and applied there to Zakharov-Kuznetsov a
shallow-water equations.

The (211)-dimensional Boussinesq equation is cons
ered with«5D521 on a finite domain (x,y)5@0,L#@0,L#
with L.0 some constant, and periodic boundary conditio
on both spatial variables. We choose a spatial mesh siz
Dx5Dy[Dm5L/2N and introduce the discrete two
dimensional Fourier transform defined as

Ukl5
1

A2N
(

i , j 51

2N

ui j e
2uk( i 21)Dm2u l ( l 21)Dm,

where

uk5 i
2p~k21!

L
,

6-5
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pment of the longitudinal instability and collapse at timet512.6 for c5
1
4 . ~b! Propagation of a stable solitary
and ui j 'u(mi j ),mi j 5( i 21)Dx1( j 21)Dy ~cf. Ref. @25#!.
Fourier spectral discretization of the (211)-dimensional
Boussinesq equation yields

] ttUkl5 ūk
2@«ūk

2Ukl1¹klF̄~U!#1sū l
2Ukl , ~32!

whereūk are the entries of the diagonal matrix defined by
relations

ūk5uk , for k51, . . . ,N,

ūN1150, and

ūk52u2N2k12 , for k5N12, . . . ,2N,

which follow from the periodicity of the discrete Fourie
transform@25#, and F̄(U) denotes the Fourier transform o
the antiderivative of the functionf (u) in Eq. ~1!. The same
result would be obtained if one applied the spectral discr
zation to the multisymplectic formulation~4!, as it was done
for the Zakharov-Kuznetsov equation in Ref.@18#.

For the second-order time derivative we used the cen
difference approximation~time step was chosen to beDt
50.01 in all the simulations!:

] ttUkl5
Ukl

n1122Ukl
n 1Ukl

n21

Dt2
. ~33!

One should note that the only valid test of this scheme can
done for the good Boussinesq equation withs.0. For s
,0 in the case of the good Boussinesq equation, an in
profile independent ofx would result in a solution which
on. The dashed line represents the initia
able casec5

3
4 .

05662
e

i-

al

e

al

could grow ‘‘faster than exponential’’ because for large tran
verse wave numbers, the growth rate of the initial data has
upper bound~ill posedness!.

To test the algorithm, we first used it to confirm the resu
for the dynamics of the one-dimensional solitary waves. T
initial profile was taken to be of the form

u~x!5
3

2
~12c2!sech2F1

2
~12c2!S x2

L

2D G1j~x!,

~34!

wherej(x) is a small random perturbation. The results a
presented in Figs. 3 and 4. Forc5 1

4 the solitary wave solu-
tion is linearly unstable as reported in Refs.@4,5#, and the
development of this linear instability is shown in Fig. 3~a!. In
the casec5 3

4 the numerical results confirm the stability o
the solitary wave@see Fig. 3~b!#. The simulations were run
on an interval of the lengthL564 with 2N5128. As a nu-
merical check, the total energy determined by the Ham
tonian ~2! was monitored, and it was found to be well b
haved till near the collapse when the significant errors oc
as illustrated in Fig. 4.

For the two-dimensional simulations, we took an initi
profile in the form of the line solitary wave uniform iny,

u~x,y,0!5
3

2
~12c2!sech2F1

2
~12c2!S x2

L

2D G1j~x,y!,

~35!

wherej(x,y) is a small random perturbation~in this casel
50). In the casec5 1

4 , the solitary wave~35! is linearly
unstable in longitudinal direction as is known from the s
bility analysis of the one-dimensional~1D! equation. In Fig.
l energy level, and the solid line shows the time evolution of energy.~a!

6-6
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ve fors51 andc5
1
4 . ~a! Initial profile. ~b! The development of the transverse modulation~time t511.25).
5~b! we can see this instability developing in a similar w
as in the 1D case. Wave collapse in this case is shown in
6~a!, with the plot of energy as a function of time in Fig
6~b!. To illustrate that the instability is due to one
dimensional longitudinal effects, we present in Fig. 7 plots
the time evolution of the maximal amplitude of the solutio
which behaves similarly in 1D and 2D cases.

Whenc5 3
4 , the solitary wave is longitudinally stable bu

transversely unstable, and the development of this instab
is presented in Figs. 8 and 9. The length of the square
was chosen to beL5128 with the number of Fourier mode
2N5256. If the perturbation added is of the form of a noi
that is uniform in both directions, one can expect during ti
evolution a selection of the transverse wave number co
sponding to the most unstable eigenmode as is illustrate
Fig. 8~b!. Using a Fourier transform of the wave profile, w
found in this case that the wave number selected ik
50.12360.003, which is a good approximation of the wa
number found from the analytical predictionkmax50.121
@cf. Fig. 2~b!#. To further investigate the long-time dynamic
and verify the analytically predicted growth rate, we star
computation with a perturbation proportional to cos(0.123y),
which corresponds to the most unstable eigenmode. At
initial stage of the evolution transverse modulation ha
slowly growing amplitude, and then the instability preva
leading finally to the collapse of the wave as shown in F
9~a!. The energy proves to be conserved rather well dur
the simulations@see Fig. 9~b!#, although it deviates substan
tially as the wave approaches the stage of collapse.

The growth of the amplitude, followed by the fast co
lapse can be observed in Fig. 10~a!. In order to compare the
theoretical and numerical growth rates, we present in F
Fig. 5.~a! Wave collapse~time t512.6). ~b!
the time evolution of energy.
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10~b! the plot of lniu(t)2u(0)i2 as a function of time. From
the Fig. 10~a!, we see that it takes some time for the tran
verse instability to develop. Therefore, we choose as a s
ing point for comparison a time interval when the most u
stable eigenmode has already been selected by the solu
and one is still within the linear regime. It can be seen fro
Fig. 10~b! that the corresponding growth rate for the soluti
is close to the one determined by the most unstable eig
value ~numerical value of the growth rate islnum'0.0367,
while the analytical result islanal'0.0371). For larger time
nonlinear effects start playing a role, and they finally lead
the collapse.

VI. CONCLUDING REMARKS

We have considered the transverse instability of line s
tary wave solutions of the (211)-dimensional Boussines
equation. Using the multisymplectic formulation of the sy
tem, we derived a geometric condition for this instability f
small transverse wave numbers. With an Evans function
proach, the linearized stability equation was analyzed,
this allowed to obtain the dependence of the instabi
growth rate for all transverse wave numbers. Numeri
simulations support the analytical predictions about tra
verse and longitudinal instabilities and demonstrate the
velopment of those instabilities and subsequent wave
lapse. Analytical and numerical conclusions about the w
number and the growth rate corresponding to the most
stable eigenmode are also in good agreement.

We conclude with an open problem. While analytic the
ries for the collapse of solitary waves for the Boussine
equation in one space dimension exist@19#, it is an interest-
Energy evolution. The dashed line represents the initial energy level,
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FIG. 7. Time evolution al case.~b! Two-dimensional
case.

FIG. 8. Solitary wav odulation~time t5210).

FIG. 9. The same as evolution. The dashed line
represents the initial ener

FIG. 10. ~a! The time
lniu(t)2u(0)i2. The solid lin
is the line of the maximal

BLYUSS, BRIDGES, AND DERKS PHYSICAL REVIEW E67, 056626 ~2003!
of the maximal amplitude for the 1D unstable solution withc5
1
4 . ~a! One-dimension

e fors51 andc5
3
4 . ~a! Initial profile. ~b! The development of the transverse m

in Fig. 8.~a! Wave collapse after transverse modulation~time t5159). ~b! Energy
gy level, and the solid line shows the time evolution of energy.
evolution of the maximal amplitude for the transversely unstable solution withc5
3
4 . ~b! The evolution of

e represents the actual solution, the dashed line corresponds to its linear approximation, and the dash-dotted line
analytical growth rate.
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TRANSVERSE INSTABILITY AND ITS LONG-TERM . . . PHYSICAL REVIEW E67, 056626 ~2003!
ing open problem to develop an analytical technique for p
dicting collapse for the case of two space dimensions, e.
generalization of the virial theorem or the result of Ref.@19#,
for example, and moreover, to determine if the transve
instability for Eq.~1! leads to the collapse forall parameter
values.
s
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